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Theoretical methods are considered for determination of temperature-dependent thermal properties and 

unsteady-state heat fluxes. The methods are based on difference equations of heat conduction obtained by 

the integro-interpolation method for plane, cylindrical, and spherical variants of  one-dimensional 

temperature fields. 

1. Methods of Measurement of Unsteady-State Heat Fluxes and Thermal Properties. In thermophysical 

research or in studies of unsteady-state heat transfer, use is made of methods based on numerical solution of the 

inverse heat-conduction problem, for example, [1, 2 ]. It is obvious that they are quite efficient but too complicated 

and unwieldy to be used in large-scale automated measurements. 

For measurement of steady-state and slowly changing heat fluxes calorimeters are used whose principle of 

operation is based on interpolation of the Fourier equation 

q = ;tVt x = 2 ( A t / A x ) .  (I) 

However, in measurement of unsteady-state heat fluxes, they give a large error. For example, in the model case 
in which the calorimeter has the characteristics 2 = 0.32 W/(m.K) ,  C -- 2.103 kJ/ (ma.K),  x = 10 -3 m and a 

temperature jump occurred at one of the boundaries, while the other is in ideal thermal contact with a semi-infinite 

body having similar thermal properties (TP), the methodological error in determining the heat flux at the 

boundaries of the calorimeter changes from 50 Yo to 4 Yo in the first 25 hours [3 ]. 

Calorimeters that take into consideration the rate of change of their volume-average temperature provide 

higher accuracy of measurement of unsteady-state heat flux densities. In [4 ] a version of such calorimeters is 

considered. It is made of metal and its mathematical formula is obtained for quasisteady conditions. Its design is 

rather complicated and, as a result, it gives a methodological error in the case of an unsteady-state rate of change 

of its temperature. 
Analytical relations of one-dimensional plane, cylindrical, and spherical temperature fields in objects of 

measurements are a theoretical basis for most modern methods of measurement of TP [4 ]. Therefore, availability 

of an analytical solution and rather simple and accurate realization of the conditions specified by the boundary- 

value of heat conduction problem are a criterion for choosing a mathematical model and a thermal action that can 

be a basis for a method of measuring TP. Such methods are considered in detail in [4 ]. 

When this approach to designing methods of measurement of TP is used, the following problems are 

inevitable. First, it is necessary to provide accurately initial and boundary conditions that strictly correspond to 

the chosen thermal model. Second, the obtained analytical solutions are unwieldy, and some difficulties can arise 

in their truncation and in expression of the sought quantity in an explicit form. Moreover, in determination of the 

temperature dependence of the thermal conductivity and the heat capacity, for example; in the form of a polynomial 

representation of these functions the problem has no exact solution. 
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2. Mathematical  Formulation of the Measuring Problem. The object of s tudy or a calorimeter that  is 

subjected to a thermal action and the temperature field in it are described by a one-dimensional  equation of the 

form 

} = x  '~C(t) vt~(x,r),  x e  Ix o , x . l ,  r e [ r  o,~k]. v x'~;t (t) Vt x (x, 3) x (2) 

i . e . ,  

The temperature at the boundaries of the object of study (the calorimeter) and at some points is known, 

t (X i ,  T)  = T i (T)  , x 0 <- x i <- x n ( i  = O, 1 . . . . .  n )  . 
(a) 

It is necessary to determine: (a) the heat flux density at the boundaries of the calorimeter q(xo,  ~), {q(xn,  
• j+l ~j+l 

3)} or the quantity of heat  Q(xo,  ~j+l - rj) = f q(xo, r)dr,  {Q(xn,  rj+l - rj) = f q(Xn, z)dT} from the known C(t)  
• j ~j 

U 
= CO and ;t (t) -- ;to; (b) the temperature dependence of the thermal conductivity ,l (t) -- Z ;tu tu and  the heat  capacity 

0 

V 
per unit volume C(t)  = Z Cv tv from the known Q(xo,  3) = Qo(r) ,  {Q(xn,  r) = Qn(r)}. 

0 

3. Theoretical Bases for Obtaining Equations for Determination of the Heat  Flux Density and Thermal  

Properties. We consider an integro-interpolation method (IIM) of obtaining difference equations that  is based on 

double integration of Eq. (2) with respect to the coordinate x [5 ]. It should be noted that the idea of double 

integration of a differential equation is used in Streitz's method [6 ] for identification of objects with lumped 

parameters. Equation (2) will be integrated from xi to x: 

x 

;t (t) [Vt x (x,  3) - x a x - a  V t  x (x  i, 7r) ] = x - a  f C (t) x a V t  T (x,  3) d x  . (4) 
xi  

Then, this identi ty is integrated with respect to x from xi to Xn and from x0 to xi: 

Xrl Xl'l X 

Laq (xi, 3) = f ;t (t) V t  x (x,  3) d x  + f x - a  d x  f C (t) x a V t  T (~, r)  d~ , 
x i x i x i 

(s) 

xi  xi  x 

L*aq (xi, r) = f ;t (t) Vt x (x, r) dx + f x -'~ dx f C (t) x ~ Vt~ (~, 3) d~. 
xo xo xi 

With the order  of integration changed, the second terms in Eqs. (5) and (6) are transformed: 

Xtg X X/I 

f x - a  d x  f C (t) x a Vt~ (~, 3) d~ = f C (t) (x  n - ~) Vt~ (~, ~') d~ ,  
x i x i x i 

(6) 

(7) 

xi  x xi  

f x - a  d x  f C (t) x ~ Vt~ (~, ~) d~ = - f C (t) (~ - Xo) Vt~ (~, ~) d~ .  
x 0 x i  xo  

(8) 

With account for the temperature dependences 2(0 and C(t)  and transformations (7) and  (8), Eqs. (5) 

and (6) take the form 
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v ;~u 
Laq (xi, z) = E U + 1 It 

u=O 

u + l  u + l  
(Xi, ~) -- t (Xn, O] + 

v CvXO { } 
+ ~ v +  1 f (xn-  ~)V t v + ' ( ~ , T ) , d ~ ,  (9) 

v=0 x i 

U 2 * r~u u + l  u + l  
Laq(xi ,  r )  = ~ U + 1 It  (X0, T) -- t (Xi, r)] - -  

u=O 

V Cv xi 

v=0 x 0 

The function t v+l (x) (v = 0, 1 . . . . .  V) is replaced by the Lagrange interpolation polynomial of n-th degree that 
coincides with it at the points xi (i -- 0 . . . . .  n): 

v+ 1 n (i v+ 1 
t (x) = ?n (x) = ~, Qn ) (x) t (xi) (v = 0, 1 . . . . .  V) ,  (11) 

i=0  

where Q(in)(X) are polynomials of n-th degree defined by the equalities [7 ] 

(X --  Xo)  . . .  (X --  X i _ l )  (X --  X i + I ) . - .  (X -- Xn) (i = 0 ,  1, n )  
Q~0 (~) = (7~: ~ .= (Z *,-,) ~ , -  x-~+,) 7. ~;=-7.) . . . . .  (12) 

Use of the Lagrange interpolation polynomial gives quadrature formulas that are exact for polynomials  of n- th  

degree. As a result, Eqs. (7) and (8) are rewritten in the form 

x n f 
f c (t) (x.  - ~) v t t  
x i 

v+l (~, r )} ,d~  = v-+ l V ~ tv+t (xi, r) (x n -  ~) X 
v=0 i=0  r xi 

vcv{n  v,l } 
x Q ) ( ~ ) a ~ =  2 v+---TV ~ p ~ t  (x . , )  , 

v=0  i = 0  • 
(13) 

xi f v + l  
f C (t) (£ - Xo) V tt  
Xo 

Cv v+ 1 
(~, T) d~ = v T 1 V ~ t (xi, ~) f (~ - Xo) × 

T v=0 i=0  x 0 

vcv{n  v+l } 
XQ ) (~)d~= ~ v+-------~V ~ p~ t (xi, T ) . 

v=0 /=0  T 

Substitution of (13) and (14) into (9) and (10) gives 

U 

L~v (xi, ~) = 
u=O 

v 

au t tu+l (xi, O - t "+l (Xn, r)] + Y. u + l  
v=O 

C v ~ {  v+lt  
v + 1 PiV 

i=0  
(x i, " t ' ) L ,  

(14) 

( is)  

La 
U 2u 

q (xi' z) = ~ U + 1 [t 
u=O 

V 
u + l  (Xo, "t') - -  t u + l  (Xi, T) ] + E 

v=O 

Cv ~ p~V {fv+l 
v + l  i=0 (xi, r)}r ' (16) 

797 



which are a basis for designing methods of measurement of TP and unsteady-state heat fluxes or quantities of heat. 

We give formulas for determination of the characteristic dimension La for plane, cylindrical, and spherical 

temperature fields: 

c o  = / ~  = x . -  x0 ; L ,  = x0 In ; c ;  = x. In - ; 

X 0 X n (X n 
1,2 = --x,, (~,1 - go)', G = ~ - go) .  

4. Obtaining Mathematical Formulas for Determination of Unsteady-State Heat Flux Densities (Quantities 

of Heat) at the Boundaries of the Calorimeter and TP of the Object of Study. In order to determine the heat flux 

density (the quantity of heat in the time rj+l - tj) at the boundaries of the calorimeter (i.e., at the points x0 and 

Xn) use is made of Eqs. (15) and (16) and information specified by the conditions of the measuring problem. As a 

result, we have the following mathematical formulas: 

,;t o C O 
q (x0, t) = ~ [T O (t) - T n (v)] + ~a  ~ piV Tt'i (z-)' 

i=O 
(17) 

2 0 C O 
q (x,,, o = ~ [7"0 (o - r .  (01 - ~ 2 p;v r~,~ ( o ,  

i=0 
(18) 

~o ~j+l 
= f Q(Xo,~/+l-z-:) ~ ~J 

Co 
[T 0 i  T) -- T.(Z-)]dz- "4- ~ ~ PiTi(z'l+l -- z-j)' 

i=O 
(19) 

]to tJf I CO ~ p; Z i (Z-j+ I -- lj). 
- = [To ( 0  - T .  ( 0  1 dz- - ~ /=o  Q ( x . , % l  D) ~ 7/ (2o) 

For their simplification and concretization, we take only three points of temperature measurement. We choose xl 

--- 0.5(x2 + x0). After integration of Eqs. (15) and (16) with respect to time with the limits [z-j, z-j+l ], where j - 0, 
1 . . . . .  k, with account for information specified in the measuring problem, a system of algebraic equations is 

obtained: 

U 2u t i l l  T~2+ 1 V Cv i=2 
LaQo(vi+l- tY )=  ~ u + l  [ T g + l ( 0 -  @)]dz-+ Z v + l  Z 

u=0 tj v=0 i=0 
T v+l , (21) 

Pi • (D+l-h) 

v ;t u 
LaQ(Xl, Z-/+I -v ] )  = ~ u +  1 

u=0 

t j+l  T~t+l V Cv i=2 
f [T~I +1 @) -- -# (01 dz- + ~ v + 1 ~] 
t/ v=0 i=1 

_ v + l  , ( 2 2 )  Pi Ti (z- /+l  - -  Z j )  

U /]'u tJ+l 
~ Q  (Xl' Z-j+ 1 -- Z'j) = Z U + 1 f 

u=0 ~j 
[~+1 (0 - ~+l (01 dz- - 

V Cv i= 1 TV+ 1 
~' v+ 1 Z P7 (z-j+l - z-j) 

v=0 i=0 
C/=o, 1 ..... k). (23) 
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The value of k is chosen proceeding from the number of coefficients 2u and Cv to be determined and the number 

of chosen equations: (21) or (21), (22), and (23). 

We give formulas for determination of TP obtained from Eqs. (21), (22), and (23) for the case in which 

2(0 -- 20 and C(t)  -- CO: 

20 _ /2 TO (r l  - ~0)  + 4T1 ( r l  - r0 )  + T2 (Zl - r0) 
a o - Co q 

6 f  [T 0 ( T ) - 2 T  t (r) + T 2 ( r ) ] d r  
r 0 

(24) 

The solution of the system of algebraic equations 

~.o ~i+t 
(20 (T:+ z - T/) = ~ f 

CO i=2 
[T O (T) - T 1 (r)] dr + "~a ~ 

i=0 
Pi Ti (r/+l - r/) (j = 0, 1) (25) 

gives 20 and Co [8 ]. If the condition 

t (x, rj+l) = t (x, Tj) (26) 

is provided in the measurement ,  the mathematical formula for determinat ion of the thermal  conductivity has the 

form 

a o = L~ ~/+I 

f t r  o (T) - 7" 2 (T) ] aT 

(27) 

The initial temperatures of the object of study entering into Eqs. (24), (25), and (27) will automatically 

be taken into consideration with their different values in the measuring process. Therefore, if a TP is considered 

to be a constant quantity within a rather narrow temperature range within which the temperature varies in the 

process of measurement, these equations can be used for determination of the TP for different initial temperatures 

in the range of study. 
5. Sources of Errors. All errors of measurement of TP and heat flux densities (quantities of heat) can be 

divided into three groups: 1) errors caused by the contact method of temperature measurement; 2) errors caused 

by inaccurate determination of the constant coefficients in the calculational formulas; (3) methodological errors 

from the inadequacy of the chosen model, the inexactness of satisfaction of the initial and boundary conditions, 

and the use of approximate formulas. 
Errors of groups 1 and 2 are not considered in this article since they are largely general for any method 

of measurement of TP and heat fluxes• We consider the components of the methodological error. 

When we obtained the difference equations, we used approximate formulas (13) and (14) for determination 

of an integral parameter over the coordinate x. This error will be evaluated by the method of obtaining an exact 

expression for the approximation of a quadrature formula [7 ]. As a result, the following relation is obtained: 

Xtl n Xn 

A = f (X n -- ~) t (~) d~ - E Pi t (xi) = f F r (~) I (r) (~) (X n -- ~) d ~ ,  (28) 
x 0 i=0 x 0 

where 

I n ] 1 Xn--~)r E PiKr(xi-~) 
Fr (~) - (r - 1) '  r 

• i=0 
(29) 
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a b 

6 10 11 E°Cv) : ~ g  J : ~ - - ~  qfv ) 

Fig. I. Measurement  of heat flux density: a, b) schemes of calorimeters for 

plane and cylindrical temperature  fields; c) a device for automatic measure-  

ment  of heat flux density and quantity of heat. 

(Xi_  ~ ) ( r - l )  X i -  ~ >-- O, 

K ,  (x  i - ~)  = 0 x i - ~ < O.  

In final form the evaluation of the approximation can be expressed as follows: 

(30) 

X n 
A <_Mr IF r(~)(x i -~) l  d~=MS r. (31) 

Xo 

For xo =- 0 and x2 = L with Pl (x) = ao + alx, we obtain So -- 0.252L 2, Sl = 0.070L 2. 

The  quanti ty M is expressed in terms of the maximum heat flux in the calorimeter  or in t e rms  of the 

maximum rate of change of the temperature  in the object: 

- ~ o  ' qmax ~o 1 [ d.~.] (32) M 1 = M 2 = ~ max . 

Thus ,  proceeding from a priori information about the maximum ra te  of change of the measured  heat  flux, 

it is possible to evaluate the methodological er ror  caused by approximate formulas (13) and (14) for de terminat ion  

of an integral parameter  over the coordinate x. In the case of measurement  of TP  and quantit ies of heat ,  this er ror  

is evaluated in terms of the maximum rate of change of the temperature  of the object at the times 3 i (j -- 0 . . . . .  k) 

of the beginning and end of integration. On the other  hand,  with this evaluation it is possible to establish heat ing 

conditions under  which the error  would not exceed a specified value. 

A second component of the error  in comprehensive determinat ion of TP  is caused by the instabil i ty of the 

solution of the system of algebraic equations (21), which is a consequence of the il l-posedness of the inverse 

heat-conduct ion problem. This component can be diminished by simultaneous use of Eqs. (21), (22), and (23) or 

by taking measurements  in heating and cooling stages. For example, in the case of the system of equations (21) 

for V = U = 1, two heating stages [3o, ~1 ], [r l ,  32] and two cooling stages [~2, r3],  [r3, r4]  can be used.  

6. Technica l  Implementat ion,  Application, and Discussion of  Obtained Solutions.  In m easu remen t  of 

uns teady-s ta te  heat  flux densities (or quantities of heat) the plane and cylindrical versions of the me thod  are  the 

most useful. In the second case heat  fluxes from liquid and gaseous heat t ransfer  agents in tubes can be measured.  

Schemes of calorimeters and a device for continuous and automatic determinat ion of the parameters  ment ioned  are  

given in Fig. 1. Depending of the source of the heat  flux, the calorimeter can be a thin plate or a hollow cyl inder  

at whose boundaries  temperatures  are  measured.  The  accuracy of determinat ion of the heat  flux dens i ty  can be 

increased by using intermediate points x i of temperature  measurement.  Th e  automatic device contains two thermal-  
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Fig. 2. Schemes of thermal measuring units for determination of thermal 

properties of: a) solid materials; b) liquids and gases. 

emf amplifiers 1 and 2, differentiator 3, integrators 4 and 5, and adders 9, 10, 11, and 12 with coefficient setters 

6, 7, and 8. This device implements fromulas (17) and (19). 

Examples of using the obtained equations for determination of TP are shown in Fig. 2. In the first case 

(Fig. 2a) a flat specimen is heated by an electric heater; temperatures are measured at its boundaries, and 

calorimeter 1 measures the quantity of heat supplied to specimen 2. The thermal conductivity and heat capacity 

can be determined with the device suggested in [9 ]. When only the thermal conductivity is measured, the device 

implements the simpler formula [10 ] 

Tj+l 
,l c ~p f ATe (0 dr 

_ ~/ (33) 

he f ALp (0 
~j 

For measurement of TP of liquids and gases, an object (Fig. 2b) in the form of a cylinder with a small 

diameter 1 filled with the studied material 3 can be conveniently used. In this case the heater is a wire 2 located 

on the axis of the cylinder, and the temperature of the heater and the inner surface of the cylinder is measured. 

The quantity of heat is determined from the power of the heater and the time of heating. 

A thermal-conductivity meter for high-conductivity materials is widely used at temperatures from room 

temperature to 150°C [I 1 ]. More than 20 instruments of various modifications (in particular, IT-02Ts) have been 

manufactured for various organizations that develop and produce high-conductivity metal ceramics used in the 

electronics industry. The thermal-conductivity meter has mctrological provision that includes a checking procedure 

and thermal-conductivity standards made of steel 12KhI8N10T, low-carbon steel, molybdenum MVCh, and copper 

M1 manufactured and certified at the Dal'standart R&P Corporation. The measurement error is within 7 %. 

It seems useful to enumerate some important advantages of the obtained solutions of the inverse heat- 

conduction problem: 1) an analytical solution of the direct heat-conduction problem is unnecessary and,  

consequently, there are no problems connected with this solution (specification of initial conditions, maintaining 

the boundary conditions with high accuracy, limitation of the number of terms in the functional series representing 

the analytical solution, and expression of the sought quantity in explicit form); 2) it is possible to evaluate all the 

components of the error of measurement of TP and heat flux densities; 3) a wide choice of heating conditions for 

the object of study is ensured so as to reduce the time of measurement and the error; 4) an exact mathematical 
formula is derived for determination of thermal conductivity; 5) the equations allow determination of the coefficients 

in the polynomial dependence of thermal conductivity and heat capacity per unit volume on temperature. Moreover, 

it is possible to the measure thermal conductivity 2(t~) and heat capacity per unit volume C ( t £ )  for different initial 

temperatures in the specified range. 

The solutions obtained allow development of effective methods of measurement of thermal properties and 

heat flux densities that can be widely used in practical measurements of thermal properties. 

N O T A T I O N  
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At, temperature across a calorimeter of thickness Ax; a = 0, 1, 2, power corresponding to plane, cylindrical, 
and spherical temperature fields; ~l(t), C(t) ,  thermal conductivity and heat capacity per unit volume of the object 

xn  xi  

of study or the calorimeter; La = x ~ f x - a d x  , L* a = xTfx- ax, characteristic dimensions corresponding to different 
xi  xo  

variants of the temperature fields; Vtx, Vtr, derivatives of the function t (x ,  z) with respect to x and r, respectively; 

xtt xi  

V{-}r , time derivative of the variable {-}; Pi = f ( x ,  - e)Q~)(~)d~, p7 = f (~ - xo)Q~{)(~)d~, weight coefficients; 
xi xo 

VTr,i, T i ( r i + l  -- ~'j), rate of change of the temperature with time at the point xi and temperature increment at the 

point xi in the time r]+l - rj, respectively; l -- 0.5(x2 - x0); r, natural number corresponding to the order of the 

derivative; M, maximum value of the derivative of order r, i.e., max t(xr); qmax, maximum heat flux density; hsp, ho 

thickness of the specimen and the calorimeter; ;t c, thermal conductivity of the material of the calorimeter; ATc(r), 

ATsp(~:), temperature difference across the calorimeter and the specimen; ao, al, coefficients of the interpolation 

polynomial of first degree. 
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